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Abstract

Written language, a human cultural invention, is far too recent a development for dedicated neural infrastructure to
have evolved in its service. Newly acquired cultural skills, such as reading, thus recycle evolutionarily older circuits
that originally evolved for different, but similar, functions (e.g., visual object recognition). The destructive-competition
hypothesis predicts that this neuronal recycling has detrimental behavioral effects on the cognitive functions for which
a cortical network originally evolved. In a study with 97 literate, low-literate, and illiterate participants from the
same socioeconomic background, we found that even after adjusting for cognitive ability and test-taking familiarity,
learning to read was associated with an increase, rather than a decrease, in object-recognition abilities. These results
are incompatible with the claim that neuronal recycling results in destructive competition and are consistent with the
possibility that learning to read instead fine-tunes general object-recognition mechanisms, a hypothesis that needs

further neuroscientific investigation.
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Learning to read has a profound impact on people’s
lives, changing not just their socioeconomic perspectives
but how they relate to the world. The broad significance
of literacy has led researchers to investigate the cognitive
(e.g., Dehaene et al., 2015; Huettig, Kolinsky, & Lachmann,
2018) and neural (e.g., Carreiras et al., 2009; Dehaene
et al., 2010; Hervais-Adelman et al., 2019; Skeide et al.,
2017) processes that underlie the acquisition of this
culturally transmitted, evolutionarily recent skill. A hall-
mark finding is that in literate people, a region in the
left occipitotemporal lobe becomes specialized for the
processing of the visual word forms (hence visual word
Jform area [VWFA]; Cohen et al., 2002; cf. Price & Devlin,
2003). This specialization is not unusual; the region is
located near other high-level visual cortical areas that
respond selectively to specific visual categories (e.g.,

faces, tools; Dehaene et al., 2010). Given that categories
such as faces have had considerable evolutionary rel-
evance for our species for a long time, it is not surprising
that the brain has evolved dedicated cortical networks
to process them effectively. Written language, however,
poses an interesting puzzle, as human writing systems
have been invented only over the last 6,000 years, which
is too recent for a dedicated cortical system to have
evolved in their service.

To account for this phenomenon, researchers have
invoked the notion of neuronal recycling, according to
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which acquiring cultural skills involves the repurposing
of circuits related to evolutionarily older but similar
functions (Dehaene & Cohen, 2007). There is strong
experimental support for this general notion, although
the exact mechanisms of this repurposing are hotly
debated (e.g., Carreiras et al., 2009; Dehaene-Lambertz
et al., 2018; Hervais-Adelman et al., 2019).

According to the initial formulation of the neuronal-
recycling hypothesis, reading acquisition involves
destructive competition in the form of an “invasion”
into neuronal space that was formerly specialized for
the processing of other visual categories, such as faces
or tools (Dehaene & Cohen, 2007). Different visual
categories are assumed to compete for limited neuronal
resources, and the acquisition of a new category
encroaches on populations of neurons that previously
performed similar computations. The converse possibil-
ity is that neuronal recycling results in a general fine-
tuning of object-recognition mechanisms and enhanced
responses to other visual categories in the ventral visual
system surrounding the VWFA (Hervais-Adelman et al.,
2019).

Previous functional MRI studies with participants of
varying literacy levels, using very similar visual stimuli,
have reported contradictory findings—some evidence
in line with destructive competition (Dehaene et al.,
2010), but also with general fine-tuning of object rec-
ognition (Hervais-Adelman et al., 2019). Here, we con-
ducted behavioral tests to distinguish the two accounts.
Behavioral testing is crucial because a main prediction
of destructive competition is that it entails “small losses
in perceptual and cognitive abilities due to competition
of the new cultural ability with the evolutionarily older
function in relevant cortical regions” (Dehaene &
Cohen, 2007, p. 385). By contrast, the visual-fine-tuning
view predicts that additional training of low-level visual
circuits on complex visual stimuli during reading also
benefits recognition in other visual categories. It thus
predicts that reading acquisition is associated with simi-
lar or better performance in tasks that involve other
visual categories. We tested object-recognition memory
of different categories (faces, cars, and bicycles) in a
large-scale study with illiterates, low literates, and liter-
ates of Tamil script in Chennai, India.

Method

Participants

Ninety-seven participants were recruited through a non-
governmental organization (NGO) working to improve
living conditions for people of lower socioeconomic
status (SES) in Chennai, the capital city of Tamil Nadu,
India. Thirty-five participants were registered with the

Statement of Relevance

A main characteristic of our species is its ability to
invent technologies that have transformed life on
Earth. During reading acquisition, a cultural skill has
to be accommodated in a cognitive and neural system
that does not provide a dedicated processing path-
way because writing systems have been used only
for the last 6,000 years, which is too short a time
for neural networks to have evolved in their service.
Reading has to create its own niche by modifying
preexisting brain networks that evolved for different
butrelated abilities (e.g., face recognition). In a large-
scale study with literate, low-literate, and illiterate
participants in India, we observed that such neuronal
recycling improves face-recognition abilities rather
than weakening them (as had previously been sug-
gested). Reading thus makes use of the remarkable
capacity of the brain to support new abilities in such
a way that related older abilities can be enhanced
rather than impaired.

NGO as illiterate, 30 were registered as low literate, and
32 were registered as literate. We originally set a target
of 30 participants per group as the maximum feasible
sample size in the time available on site; that slightly
more illiterate and literate participants took part is due
to varying numbers of illiterate, low-literate, and literate
participants being available on any given day. The
groups were matched for age and SES, but there was a
marked difference in the average number of completed
years of education among the three groups (see Table
1 in the Supplemental Material available online). Par-
ticipants were allowed to wear glasses or contact lenses.
The tests reported below were conducted as part of a
larger battery of tests that took each participant approx-
imately 3 hr to complete. Participants received 2,400
Indian rupees (roughly equivalent to €30) as compensa-
tion, equivalent to about 2 months’ pay at the mean
salary in our sample.

Design and procedure

In order to apply a conservative test of the behavioral
consequences of literacy on object recognition, we
selected participants with differing literacy from the
same communities and socioeconomic backgrounds
and statistically corrected reading proficiency for cogni-
tive ability and familiarity with formal test-taking settings.
We collected word-reading scores and pseudoword-
reading scores to assess the reliability of participants’
self-reported literacy status, as well as measures of
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nonverbal intelligence (Raven’s Progressive Matrices;
Bilker et al., 2012; Raven, 1938) and working memory
(digit span) to enable us to statistically control for par-
ticipants’ secondary effects of literacy, such as working
memory and general cognitive ability.

All tasks were administered using a laptop computer
to record participant responses. Spoken instructions
were prerecorded in Tamil and played automatically
for each participant to ensure that literate and illiterate
participants received identical instructions in a format
that they could understand. Items in the visual tasks
were displayed on the laptop screen in a size corre-
sponding to roughly 5° of visual angle.

Word reading. The word-reading section of the test
battery consisted of word and pseudoword reading. For
both words and pseudowords, participants were given 60
s to read up to 100 items from a list presented on paper.
Responses were recorded and scored for number of
words read correctly. A native speaker of Tamil designed
the Tamil pseudowords used in this task to ensure that all
pseudowords were phonotactically legal. Response scor-
ing was also performed by a native speaker.

Digit span. Forward and backward digit-span tasks
were conducted to assess the working memory capacity
of the participants. For both forward and backward digit
span, the participant heard a series of number sequences.
The sequences increased in length from two numbers to
10 numbers for forward digit span and from two num-
bers to eight numbers for backward digit span. Number
sequences were prerecorded in Tamil by a native Tamil
speaker. After each number sequence was presented,
participants repeated the sequence in the original order
(for forward digit span) or in reverse order (for backward
digit span). Each task was stopped when participants
made two mistakes consecutively. Responses for both
forward and backward digit span were recorded and
scored on the basis of the longest sequence repeated cor-
rectly before the task was stopped.

Raven’s Standard Progressive Matrices. General cog-
nitive ability was measured using the Raven’s Standard
Progressive Matrices task (Raven, 1938). Because of time
constraints, we used a shortened version constructed by
Bilker and colleagues (2012) by selecting two lists of nine
items from the original redundant list of 60 items; we
used item-response theory to ensure that sensitivity was
preserved. Our task consisted of both nine-item lists;
each list was presented as a block of items in order of
increasing difficulty. Raven’s Standard Progressive Matrices
items consist of a display of a visuospatial pattern from
which a section is missing. Participants must select the sec-
tion that best fits in the empty spot from a multiple-choice

display of six or eight possible replacement sections.
Answer options are traditionally numbered, and responses
are delivered using a keyboard or in writing. To adapt
this paradigm for illiterate participants, we presented the
answer options with colored labels that corresponded to
colored keys on a keyboard.

Cambridge Recognition Memory Tests. The Cam-
bridge Face Memory Test (Duchaine & Nakayama, 2000),
Cambridge Car Memory Test (Dennett et al., 2012), and
Cambridge Bicycle Memory Test (Dalrymple et al., 2014),
which we refer to collectively as the Cambridge tests, are
a set of tasks meant to test object-recognition memory.
Participants are first familiarized with six different items
(faces, cars, or bicycles) through a series of practice ques-
tions. In Step 1, a single target item is presented three
times: once rotated 30° to the left, once head on, and
once rotated 30° to the right. Each of these presentations
lasts 3 s. Then in Step 2, a display of three items is pre-
sented, one of which is the previously presented item.
Participants are instructed to select the previously pre-
sented item by pressing a key. Step 2 is repeated three
times per target item. The sequence is repeated six times
with different items, so the participant is familiarized with
six target items. Object recognition for these six target
items is then tested. In Step 1, a display of all six target
items is presented for 20 s, and participants are instructed
to memorize these items. This is followed by Step 2, in
which a display of three items is presented, one of which
was presented in the memorization display. Participants
are instructed to select the memorized item by pressing a
key. Step 2 is repeated 30 times.

The test phase consists of two parts. In the first half,
the images in the memorization display and test display
are drawn from the same set. In the second half, the
procedure is repeated as described above, but Gaussian
visual noise is added to the answer-slide images to
increase recognition difficulty.

The usual format for the Cambridge tests is to have
written instructions presented on screen and response
options labeled with numbers that participants then
press on a keyboard. Presenting written instructions
and numerals to illiterate participants is not possible,
so we adapted the task to illiterates by replacing the
written instructions with prerecorded instructions in
Tamil, replacing the on-screen response labels with
primary-color swatches, and putting corresponding
color patches on the physical response keys.

Statistical modeling

Statistical analyses were performed using Bayesian lin-
ear and logistic (where appropriate) mixed-effects
regression implemented with the Bambi package for
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Python (Yarkoni & Westfall, 2018), using the PyMC3
back end (Salvatier et al., 2016). We placed moderately
regularizing priors on both fixed and random effects,
in the form of narrow (¢ = .2 on a partial-correlation
scale) zero-centered normal distributions. Models were
estimated by Markov chain Monte Carlo sampling, using
the No-U-Turn Sampler (NUTS; Hoffman, & Gelman,
2014). The starting point for the Markov chains was
obtained through automatic differentiation variational
inference (ADVD). Four chains were run for 2,500 tuning
samples, after which 5,000 posterior samples were
obtained per chain, for 20,000 posterior samples in total
per model. For each test, we fitted models with various
permutations of effects and selected models on the basis
of fit. The nature of the predictor matrix for the models
predicting Cambridge-test scores (no items repeated
across categories; adjusted reading score as a between-
participants predictor) meant that the data did not sup-
port even a minimal random-effects structure. For the
Cambridge-test scores, we therefore fitted only various
permutations of fixed effects and their interactions. In the
interest of parsimony, model fits were compared using
pareto-smoothed importance sampling with a leave-one-
out information criterion (PSIS-LOOIC), a Bayesian index
of model fit that penalizes model complexity. Diagnostics
indicated no sampling problems for the selected model
(minimum 72,4 > 8,000, 7 < 1.001). Full details on
model comparison and the full range of models con-
sidered can be found in the Supplemental Material.

Results

Object-recognition memory was assessed in Tamil illit-
erates, low literates, and literates (see the Supplemental
Material for the relationship between self-reported literacy
and reading scores) to test whether literacy acquisition
comes with a cost for other visual categories, such as
faces. Participants performed the Cambridge Face Mem-
ory Test, Cambridge Car Memory Test, and Cambridge
Bicycle Memory Test. In these tests, participants see
arrays of six target items (faces, bicycles, and cars, in
separate blocks) and are then shown three items, one of
which appeared in the six-item arrays. Their task is to
select that item. In the second half of the task, Gaussian
noise is added to increase difficulty.

Adjusting reading scores

As expected for different but related measures of cogni-
tive ability, participants’ Raven’s Progressive Matrices
scores and digit-span scores were moderately correlated
(p = .48; see Fig. 1). Both Raven’s Progressive Matrices
scores and digit-span scores were also moderately
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Fig. 1. Heat map showing absolute correlations between digit span,
Raven'’s Standard Progressive Matrices score, and both raw and adjusted
reading score.

correlated with Tamil word-reading scores (p = .51 for
both measures; see Fig. 1). These correlations indicate
common variance among the three tasks. Previous
research suggests that literacy is associated with increased
verbal working memory (Demoulin & Kolinsky, 2016;
Smalle et al., 2019) and Raven’s scores (Hervais-Adelman
et al., 2019; Skeide et al., 2017). However, although
poverty and other socioeconomic factors are the main
reasons for illiteracy in India, it cannot be conclusively
ruled out that literacy-unrelated general cognitive abil-
ity and familiarity with formal test-taking settings under-
lie some of the common variance among Raven’s,
digit-span, and reading scores.

To solve this issue, and to achieve a strong test of our
experimental hypothesis, we regressed out common vari-
ance attributable to general cognitive ability and familiar-
ity with test taking while preserving the variance uniquely
associated with literacy. To adjust the raw (contaminated)
reading scores, we constructed a Bayesian binomial
(generalized linear) mixed-effects model to predict the
proportion of correctly read words and pseudowords in
the reading task from the proportion of correct responses
in the Raven’s Progressive Matrices task and the mean
of forward and backward digit span. After fitting the
model, we extracted the means of the posterior samples
for the by-participant intercepts from this model for use
as predictors in the statistical model for the Cambridge
tests. In line with our expectations, the new, adjusted
reading score was no longer correlated with the cogni-
tive-ability measures (p = .03 for Raven’s Progressive
Matrices, p = .02 for digit span; see Fig. 1) but was still
strongly correlated with the original, unadjusted reading
score (p = .71). Full details on the model-fitting proce-
dure and the construction of the Raven’s and digit-span
predictors can be found in the Supplemental Material.
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Fig. 2. Densities of posterior estimates in each object category and noise condition and the
overall effect of reading score for the model with raw reading score as a predictor and the
model with adjusted reading score as a predictor. Coefficients are presented as log odds,
on a linear scale, for ease of visual comparison. Conditional effects were rereferenced for

ease of visual comparison.

Relationship between literacy
and object-recognition memory

For modeling the association between literacy and per-
formance on the Cambridge tests, we took each trial as
a Bernoulli trial, using a Bayesian generalized linear
model to predict the odds of successfully answering a
given trial. We pooled the data from all three tasks
(bicycles, faces, and cars), creating a dummy-coded pre-
dictor for each task. Similarly, we created dummy-coded
predictors for the visual noise and no-visual-noise con-
ditions. Which conditions were used as reference levels
in our analysis was arbitrary and did not affect our
results, because we computed conditional effects for
each condition from posterior samples.

On the basis of model comparisons using PSIS-LOOIC,
we selected a model with the predictors visual noise,
object category, and adjusted reading score and the inter-
actions between visual noise and object category.

The main result was that higher reading scores were
associated with higher recognition-memory scores (see
Fig. 2). Crucially, this was the case both for the raw and
the adjusted reading scores; even when we regressed
out variance that could be attributed to general cogni-
tive capacity and test-taking familiarity, there was no
evidence for decreased object-recognition abilities in

literates. Rather, literacy was associated with slightly
better object recognition—a result that contrasts with
the central tenet of the destructive-competition hypoth-
esis that literacy acquisition has detrimental effects on
other visual abilities, such as face recognition (Dehaene
& Cohen, 2007). This result is consistent with the visual-
fine-tuning account of neuronal recycling and with
recent evidence for enhanced responses to visual stim-
uli around the VWFA and in early visual cortex (Hervais-
Adelman et al., 2019). Because the model selection
preferred a model with a single slope for literacy across
all visual categories, we observed a positive relation-
ship between literacy and object-recognition memory
for all visual categories (faces, bicycles, and cars; see
the Supplemental Material).

An additional, possibly cultural effect on object-rec-
ognition memory manifested itself in the relatively large
difference in performance between the car and bicycle
categories. Improved recognition memory for bicycles
compared with cars is likely largely due to the better
familiarity of our low-SES participants with bicycles
than with cars. Participants largely used bicycles and
motorcycles for transportation in daily life, and even
when they encountered cars, those cars were unlikely
to be the early 1990s models sold in Western Europe
that were used in the Cambridge Car Memory Test.
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Besides these main results, there was strong evi-
dence for a varying interaction between object category
and visual noise: It appears that bicycles and cars were
slightly easier to recognize in the noise condition than
in the no-visual-noise condition. The difference in log-
odds ratio was 0.11 for bicycles (95% credible interval
[CI] = [0.00, 0.22]) and 0.14 for cars (95% CI =[0.03, 0.25)).
By contrast, for faces, the noise condition appeared to
be much more difficult than the no-visual-noise condi-
tion (difference in log-odds ratio = —0.65, 95% CI =
[-0.76, —0.54)).

Discussion

Our findings are incompatible with destructive competi-
tion and consistent with neuroimaging evidence (Hervais-
Adelman et al., 2019) that learning to read may fine-tune
object-recognition mechanisms, namely, that reading
acquisition results in increased sensitivity to visual
stimuli in addition to reading-related enhanced atten-
tional and oculomotor capacities (Kastner et al., 2004;
Skeide et al., 2017).

Importantly, the comparatively better object-
recognition abilities of literates than illiterates appear
to be directly related to reading acquisition. Such abili-
ties are very unlikely to be a secondary effect of lit-
eracy, such as increased verbal working memory
(Demoulin & Kolinsky, 2016; Smalle et al., 2019), gen-
eral cognitive ability, or familiarity with test taking,
because in the present study we regressed out common
variance associated with these traits. To more directly
assess causality, we recommend further investigation
of the results from the present large-scale cross-sectional
study with a longitudinal design (cf. Goswami, 2015;
Huettig, Lachmann, et al., 2018). The positive relation-
ship between reading ability and object-recognition
memory in the present study casts serious doubts on
the viability of the destructive-competition hypothesis.
Whereas this hypothesis views the brain as a system
with finite processing resources for which different
functions are competing, the present findings raise the
intriguing possibility that the brain, remarkably, is able
to support new abilities in such a way that related older
abilities can be enhanced rather than impaired. Further
behavioral and neuroscientific research could explore
this possibility in more detail, for instance, examining
whether literates’ better object-recognition abilities are
related to shared (neural) processing between face and
word reading, as both skills require sophisticated foveal
processing.
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