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Learning to read has a profound impact on people’s 
lives, changing not just their socioeconomic perspectives 
but how they relate to the world. The broad significance 
of literacy has led researchers to investigate the cognitive 
(e.g., Dehaene et al., 2015; Huettig, Kolinsky, & Lachmann, 
2018) and neural (e.g., Carreiras et al., 2009; Dehaene 
et al., 2010; Hervais-Adelman et al., 2019; Skeide et al., 
2017) processes that underlie the acquisition of this 
culturally transmitted, evolutionarily recent skill. A hall-
mark finding is that in literate people, a region in the 
left occipitotemporal lobe becomes specialized for the 
processing of the visual word forms (hence visual word 
form area [VWFA]; Cohen et al., 2002; cf. Price & Devlin, 
2003). This specialization is not unusual; the region is 
located near other high-level visual cortical areas that 
respond selectively to specific visual categories (e.g., 

faces, tools; Dehaene et al., 2010). Given that categories 
such as faces have had considerable evolutionary rel-
evance for our species for a long time, it is not surprising 
that the brain has evolved dedicated cortical networks 
to process them effectively. Written language, however, 
poses an interesting puzzle, as human writing systems 
have been invented only over the last 6,000 years, which 
is too recent for a dedicated cortical system to have 
evolved in their service.

To account for this phenomenon, researchers have 
invoked the notion of neuronal recycling, according to 
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Abstract
Written language, a human cultural invention, is far too recent a development for dedicated neural infrastructure to 
have evolved in its service. Newly acquired cultural skills, such as reading, thus recycle evolutionarily older circuits 
that originally evolved for different, but similar, functions (e.g., visual object recognition). The destructive-competition 
hypothesis predicts that this neuronal recycling has detrimental behavioral effects on the cognitive functions for which 
a cortical network originally evolved. In a study with 97 literate, low-literate, and illiterate participants from the 
same socioeconomic background, we found that even after adjusting for cognitive ability and test-taking familiarity, 
learning to read was associated with an increase, rather than a decrease, in object-recognition abilities. These results 
are incompatible with the claim that neuronal recycling results in destructive competition and are consistent with the 
possibility that learning to read instead fine-tunes general object-recognition mechanisms, a hypothesis that needs 
further neuroscientific investigation.
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which acquiring cultural skills involves the repurposing 
of circuits related to evolutionarily older but similar 
functions (Dehaene & Cohen, 2007). There is strong 
experimental support for this general notion, although 
the exact mechanisms of this repurposing are hotly 
debated (e.g., Carreiras et al., 2009; Dehaene-Lambertz 
et al., 2018; Hervais-Adelman et al., 2019).

According to the initial formulation of the neuronal-
recycling hypothesis, reading acquisition involves 
destructive competition in the form of an “invasion” 
into neuronal space that was formerly specialized for 
the processing of other visual categories, such as faces 
or tools (Dehaene & Cohen, 2007). Different visual 
categories are assumed to compete for limited neuronal 
resources, and the acquisition of a new category 
encroaches on populations of neurons that previously 
performed similar computations. The converse possibil-
ity is that neuronal recycling results in a general fine-
tuning of object-recognition mechanisms and enhanced 
responses to other visual categories in the ventral visual 
system surrounding the VWFA (Hervais-Adelman et al., 
2019).

Previous functional MRI studies with participants of 
varying literacy levels, using very similar visual stimuli, 
have reported contradictory findings—some evidence 
in line with destructive competition (Dehaene et  al., 
2010), but also with general fine-tuning of object rec-
ognition (Hervais-Adelman et al., 2019). Here, we con-
ducted behavioral tests to distinguish the two accounts. 
Behavioral testing is crucial because a main prediction 
of destructive competition is that it entails “small losses 
in perceptual and cognitive abilities due to competition 
of the new cultural ability with the evolutionarily older 
function in relevant cortical regions” (Dehaene & 
Cohen, 2007, p. 385). By contrast, the visual-fine-tuning 
view predicts that additional training of low-level visual 
circuits on complex visual stimuli during reading also 
benefits recognition in other visual categories. It thus 
predicts that reading acquisition is associated with simi-
lar or better performance in tasks that involve other 
visual categories. We tested object-recognition memory 
of different categories (faces, cars, and bicycles) in a 
large-scale study with illiterates, low literates, and liter-
ates of Tamil script in Chennai, India.

Method

Participants

Ninety-seven participants were recruited through a non-
governmental organization (NGO) working to improve 
living conditions for people of lower socioeconomic 
status (SES) in Chennai, the capital city of Tamil Nadu, 
India. Thirty-five participants were registered with the 

NGO as illiterate, 30 were registered as low literate, and 
32 were registered as literate. We originally set a target 
of 30 participants per group as the maximum feasible 
sample size in the time available on site; that slightly 
more illiterate and literate participants took part is due 
to varying numbers of illiterate, low-literate, and literate 
participants being available on any given day. The 
groups were matched for age and SES, but there was a 
marked difference in the average number of completed 
years of education among the three groups (see Table 
1 in the Supplemental Material available online). Par-
ticipants were allowed to wear glasses or contact lenses. 
The tests reported below were conducted as part of a 
larger battery of tests that took each participant approx-
imately 3 hr to complete. Participants received 2,400 
Indian rupees (roughly equivalent to €30) as compensa-
tion, equivalent to about 2 months’ pay at the mean 
salary in our sample.

Design and procedure

In order to apply a conservative test of the behavioral 
consequences of literacy on object recognition, we 
selected participants with differing literacy from the 
same communities and socioeconomic backgrounds 
and statistically corrected reading proficiency for cogni-
tive ability and familiarity with formal test-taking settings. 
We collected word-reading scores and pseudoword-
reading scores to assess the reliability of participants’ 
self-reported literacy status, as well as measures of 

Statement of Relevance 

A main characteristic of our species is its ability to 
invent technologies that have transformed life on  
Earth. During reading acquisition, a cultural skill has  
to be accommodated in a cognitive and neural system  
that does not provide a dedicated processing path-
way because writing systems have been used only  
for the last 6,000 years, which is too short a time 
for neural networks to have evolved in their service. 
Reading has to create its own niche by modifying 
preexisting brain networks that evolved for different 
but related abilities (e.g., face recognition). In a large-
scale study with literate, low-literate, and illiterate 
participants in India, we observed that such neuronal 
recycling improves face-recognition abilities rather  
than weakening them (as had previously been sug-
gested). Reading thus makes use of the remarkable 
capacity of the brain to support new abilities in such 
a way that related older abilities can be enhanced 
rather than impaired.
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nonverbal intelligence (Raven’s Progressive Matrices; 
Bilker et al., 2012; Raven, 1938) and working memory 
(digit span) to enable us to statistically control for par-
ticipants’ secondary effects of literacy, such as working 
memory and general cognitive ability.

All tasks were administered using a laptop computer 
to record participant responses. Spoken instructions 
were prerecorded in Tamil and played automatically 
for each participant to ensure that literate and illiterate 
participants received identical instructions in a format 
that they could understand. Items in the visual tasks 
were displayed on the laptop screen in a size corre-
sponding to roughly 5° of visual angle.

Word reading. The word-reading section of the test 
battery consisted of word and pseudoword reading. For 
both words and pseudowords, participants were given 60 
s to read up to 100 items from a list presented on paper. 
Responses were recorded and scored for number of 
words read correctly. A native speaker of Tamil designed 
the Tamil pseudowords used in this task to ensure that all 
pseudowords were phonotactically legal. Response scor-
ing was also performed by a native speaker.

Digit span. Forward and backward digit-span tasks 
were conducted to assess the working memory capacity 
of the participants. For both forward and backward digit 
span, the participant heard a series of number sequences. 
The sequences increased in length from two numbers to 
10 numbers for forward digit span and from two num-
bers to eight numbers for backward digit span. Number 
sequences were prerecorded in Tamil by a native Tamil 
speaker. After each number sequence was presented, 
participants repeated the sequence in the original order 
(for forward digit span) or in reverse order (for backward 
digit span). Each task was stopped when participants 
made two mistakes consecutively. Responses for both 
forward and backward digit span were recorded and 
scored on the basis of the longest sequence repeated cor-
rectly before the task was stopped.

Raven’s Standard Progressive Matrices. General cog-
ni tive ability was measured using the Raven’s Standard 
Progressive Matrices task (Raven, 1938). Because of time 
constraints, we used a shortened version constructed by 
Bilker and colleagues (2012) by selecting two lists of nine 
items from the original redundant list of 60 items; we 
used item-response theory to ensure that sensitivity was 
preserved. Our task consisted of both nine-item lists; 
each list was presented as a block of items in order of 
increasing difficulty. Raven’s Standard Progressive Matrices 
items consist of a display of a visuospatial pattern from 
which a section is missing. Participants must select the sec-
tion that best fits in the empty spot from a multiple-choice 

display of six or eight possible replacement sections. 
Answer options are traditionally numbered, and responses 
are delivered using a keyboard or in writing. To adapt 
this paradigm for illiterate participants, we presented the 
answer options with colored labels that corresponded to 
colored keys on a keyboard.

Cambridge Recognition Memory Tests. The Cam-
bridge Face Memory Test (Duchaine & Nakayama, 2006), 
Cambridge Car Memory Test (Dennett et al., 2012), and 
Cambridge Bicycle Memory Test (Dalrymple et al., 2014), 
which we refer to collectively as the Cambridge tests, are 
a set of tasks meant to test object-recognition memory. 
Participants are first familiarized with six different items 
(faces, cars, or bicycles) through a series of practice ques-
tions. In Step 1, a single target item is presented three 
times: once rotated 30° to the left, once head on, and 
once rotated 30° to the right. Each of these presentations 
lasts 3 s. Then in Step 2, a display of three items is pre-
sented, one of which is the previously presented item. 
Participants are instructed to select the previously pre-
sented item by pressing a key. Step 2 is repeated three 
times per target item. The sequence is repeated six times 
with different items, so the participant is familiarized with 
six target items. Object recognition for these six target 
items is then tested. In Step 1, a display of all six target 
items is presented for 20 s, and participants are instructed 
to memorize these items. This is followed by Step 2, in 
which a display of three items is presented, one of which 
was presented in the memorization display. Participants 
are instructed to select the memorized item by pressing a 
key. Step 2 is repeated 30 times.

The test phase consists of two parts. In the first half, 
the images in the memorization display and test display 
are drawn from the same set. In the second half, the 
procedure is repeated as described above, but Gaussian 
visual noise is added to the answer-slide images to 
increase recognition difficulty.

The usual format for the Cambridge tests is to have 
written instructions presented on screen and response 
options labeled with numbers that participants then 
press on a keyboard. Presenting written instructions 
and numerals to illiterate participants is not possible, 
so we adapted the task to illiterates by replacing the 
written instructions with prerecorded instructions in 
Tamil, replacing the on-screen response labels with 
primary-color swatches, and putting corresponding 
color patches on the physical response keys.

Statistical modeling

Statistical analyses were performed using Bayesian lin-
ear and logistic (where appropriate) mixed-effects 
regression implemented with the Bambi package for 
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Python (Yarkoni & Westfall, 2018), using the PyMC3 
back end (Salvatier et al., 2016). We placed moderately 
regularizing priors on both fixed and random effects, 
in the form of narrow (σ = .2 on a partial-correlation 
scale) zero-centered normal distributions. Models were 
estimated by Markov chain Monte Carlo sampling, using 
the No-U-Turn Sampler (NUTS; Hoffman, & Gelman, 
2014). The starting point for the Markov chains was 
obtained through automatic differentiation variational 
inference (ADVI). Four chains were run for 2,500 tuning 
samples, after which 5,000 posterior samples were 
obtained per chain, for 20,000 posterior samples in total 
per model. For each test, we fitted models with various 
permutations of effects and selected models on the basis 
of fit. The nature of the predictor matrix for the models 
predicting Cambridge-test scores (no items repeated 
across categories; adjusted reading score as a between-
participants predictor) meant that the data did not sup-
port even a minimal random-effects structure. For the 
Cambridge-test scores, we therefore fitted only various 
permutations of fixed effects and their interactions. In the 
interest of parsimony, model fits were compared using 
pareto-smoothed importance sampling with a leave-one-
out information criterion (PSIS-LOOIC), a Bayesian index 
of model fit that penalizes model complexity. Diagnostics 
indicated no sampling problems for the selected model 
(minimum neffective > 8,000, r < 1.001). Full details on 
model comparison and the full range of models con-
sidered can be found in the Supplemental Material.

Results

Object-recognition memory was assessed in Tamil illit-
erates, low literates, and literates (see the Supplemental 
Material for the relationship between self-reported literacy 
and reading scores) to test whether literacy acquisition 
comes with a cost for other visual categories, such as 
faces. Participants performed the Cambridge Face Mem-
ory Test, Cambridge Car Memory Test, and Cambridge 
Bicycle Memory Test. In these tests, participants see 
arrays of six target items (faces, bicycles, and cars, in 
separate blocks) and are then shown three items, one of 
which appeared in the six-item arrays. Their task is to 
select that item. In the second half of the task, Gaussian 
noise is added to increase difficulty.

Adjusting reading scores

As expected for different but related measures of cogni-
tive ability, participants’ Raven’s Progressive Matrices 
scores and digit-span scores were moderately correlated 
(ρ = .48; see Fig. 1). Both Raven’s Progressive Matrices 
scores and digit-span scores were also moderately 

correlated with Tamil word-reading scores (ρ = .51 for 
both measures; see Fig. 1). These correlations indicate 
common variance among the three tasks. Previous 
research suggests that literacy is associated with increased 
verbal working memory (Demoulin & Kolinsky, 2016; 
Smalle et al., 2019) and Raven’s scores (Hervais-Adelman 
et  al., 2019; Skeide et  al., 2017). However, although 
poverty and other socioeconomic factors are the main 
reasons for illiteracy in India, it cannot be conclusively 
ruled out that literacy-unrelated general cognitive abil-
ity and familiarity with formal test-taking settings under-
lie some of the common variance among Raven’s, 
digit-span, and reading scores.

To solve this issue, and to achieve a strong test of our 
experimental hypothesis, we regressed out common vari-
ance attributable to general cognitive ability and familiar-
ity with test taking while preserving the variance uniquely 
associated with literacy. To adjust the raw (contaminated) 
reading scores, we constructed a Bayesian binomial 
(generalized linear) mixed-effects model to predict the 
proportion of correctly read words and pseudowords in 
the reading task from the proportion of correct responses 
in the Raven’s Progressive Matrices task and the mean 
of forward and backward digit span. After fitting the 
model, we extracted the means of the posterior samples 
for the by-participant intercepts from this model for use 
as predictors in the statistical model for the Cambridge 
tests. In line with our expectations, the new, adjusted 
reading score was no longer correlated with the cogni-
tive-ability measures (ρ = .03 for Raven’s Progressive 
Matrices, ρ = .02 for digit span; see Fig. 1) but was still 
strongly correlated with the original, unadjusted reading 
score (ρ = .71). Full details on the model-fitting proce-
dure and the construction of the Raven’s and digit-span 
predictors can be found in the Supplemental Material.
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Fig. 1. Heat map showing absolute correlations between digit span, 
Raven’s Standard Progressive Matrices score, and both raw and adjusted 
reading score.
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Relationship between literacy  
and object-recognition memory

For modeling the association between literacy and per-
formance on the Cambridge tests, we took each trial as 
a Bernoulli trial, using a Bayesian generalized linear 
model to predict the odds of successfully answering a 
given trial. We pooled the data from all three tasks 
(bicycles, faces, and cars), creating a dummy-coded pre-
dictor for each task. Similarly, we created dummy-coded 
predictors for the visual noise and no-visual-noise con-
ditions. Which conditions were used as reference levels 
in our analysis was arbitrary and did not affect our 
results, because we computed conditional effects for 
each condition from posterior samples.

On the basis of model comparisons using PSIS-LOOIC, 
we selected a model with the predictors visual noise, 
object category, and adjusted reading score and the inter-
actions between visual noise and object category.

The main result was that higher reading scores were 
associated with higher recognition-memory scores (see 
Fig. 2). Crucially, this was the case both for the raw and 
the adjusted reading scores; even when we regressed 
out variance that could be attributed to general cogni-
tive capacity and test-taking familiarity, there was no 
evidence for decreased object-recognition abilities in 

literates. Rather, literacy was associated with slightly 
better object recognition—a result that contrasts with 
the central tenet of the destructive-competition hypoth-
esis that literacy acquisition has detrimental effects on 
other visual abilities, such as face recognition (Dehaene 
& Cohen, 2007). This result is consistent with the visual-
fine-tuning account of neuronal recycling and with 
recent evidence for enhanced responses to visual stim-
uli around the VWFA and in early visual cortex (Hervais-
Adelman et  al., 2019). Because the model selection 
preferred a model with a single slope for literacy across 
all visual categories, we observed a positive relation-
ship between literacy and object-recognition memory 
for all visual categories (faces, bicycles, and cars; see 
the Supplemental Material).

An additional, possibly cultural effect on object-rec-
ognition memory manifested itself in the relatively large 
difference in performance between the car and bicycle 
categories. Improved recognition memory for bicycles 
compared with cars is likely largely due to the better 
familiarity of our low-SES participants with bicycles 
than with cars. Participants largely used bicycles and 
motorcycles for transportation in daily life, and even 
when they encountered cars, those cars were unlikely 
to be the early 1990s models sold in Western Europe 
that were used in the Cambridge Car Memory Test.

Adjusted Reading Model
Raw Reading Model

β (Log Odds)
−0.4 −0.2 0.0 0.2 0.4

Bikes × No Noise

Bikes × Noise

Cars × No Noise

Cars × Noise

Faces × No Noise

Faces × Noise

Reading Score

Fig. 2. Densities of posterior estimates in each object category and noise condition and the 
overall effect of reading score for the model with raw reading score as a predictor and the 
model with adjusted reading score as a predictor. Coefficients are presented as log odds, 
on a linear scale, for ease of visual comparison. Conditional effects were rereferenced for 
ease of visual comparison.
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Besides these main results, there was strong evi-
dence for a varying interaction between object category 
and visual noise: It appears that bicycles and cars were 
slightly easier to recognize in the noise condition than 
in the no-visual-noise condition. The difference in log-
odds ratio was 0.11 for bicycles (95% credible interval 
[CI] = [0.00, 0.22]) and 0.14 for cars (95% CI = [0.03, 0.25]). 
By contrast, for faces, the noise condition appeared to 
be much more difficult than the no-visual-noise condi-
tion (difference in log-odds ratio = −0.65, 95% CI = 
[−0.76, −0.54]).

Discussion

Our findings are incompatible with destructive competi-
tion and consistent with neuroimaging evidence (Hervais-
Adelman et al., 2019) that learning to read may fine-tune 
object-recognition mechanisms, namely, that reading 
acquisition results in increased sensitivity to visual 
stimuli in addition to reading-related enhanced atten-
tional and oculomotor capacities (Kastner et al., 2004; 
Skeide et al., 2017).

Importantly, the comparatively better object-
recognition abilities of literates than illiterates appear 
to be directly related to reading acquisition. Such abili-
ties are very unlikely to be a secondary effect of lit-
eracy, such as increased verbal working memory 
(Demoulin & Kolinsky, 2016; Smalle et al., 2019), gen-
eral cognitive ability, or familiarity with test taking, 
because in the present study we regressed out common 
variance associated with these traits. To more directly 
assess causality, we recommend further investigation 
of the results from the present large-scale cross-sectional 
study with a longitudinal design (cf. Goswami, 2015; 
Huettig, Lachmann, et al., 2018). The positive relation-
ship between reading ability and object-recognition 
memory in the present study casts serious doubts on 
the viability of the destructive-competition hypothesis. 
Whereas this hypothesis views the brain as a system 
with finite processing resources for which different 
functions are competing, the present findings raise the 
intriguing possibility that the brain, remarkably, is able 
to support new abilities in such a way that related older 
abilities can be enhanced rather than impaired. Further 
behavioral and neuroscientific research could explore 
this possibility in more detail, for instance, examining 
whether literates’ better object-recognition abilities are 
related to shared (neural) processing between face and 
word reading, as both skills require sophisticated foveal 
processing.
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