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Abstract

Much has been written about the role of prediction in cognition in general, and lan-

guage processing in particular, with some authors even claiming that prediction is the

central goal of cognition. Attributing such a specific goal to cognition seems specula-

tive, but prediction is generally held to play an important role in both perception and

action. In empirical studies of language processing, however, measures of predictabil-

ity such as forward transitional probability (or surprisal) are often no more effective in

describing behavioral and neural phenomena than measures of post- or retrodictabil-

ity such as backward transitional probability. We address this paradox by looking at the

relationship between these different information theoretic measures and proposing a

mechanistic account of how they are used in cognition. We posit that backward transi-

tional probabilities support causal inferences about the occurrence of word sequences.

Using Bayes’ Theorem, we demonstrate that predictions (formalized as forward transi-

tional probabilities) can be used in conjunction with the marginal probabilities of the

current state/word and the upcoming state/word to compute these causal inferences.

This conceptualization of causal inference in language processing both accounts for the

role of prediction, and the surprising effectiveness of backwards transitional probability

as a predictor of human behavior and its neural correlates.

1 On n-gram frequency and conditional probability

For at least half a century, it has been recognized high frequency1 words are easier to

produce (Jescheniak & Levelt, 1994; Oldfield & Wingfield, 1965) and to recognize, both

in speech (Broadbent, 1967; Cleland et al., 2006; Dahan et al., 2001) and in print (Cle-

land et al., 2006; Kuperman, 2013; Rayner, 1998). However, when modeling language

1We use the term frequency with regards to word occurrence in this article, which generally denotes a rate
of occurrence (e.g., number of word occurrences per 1 million words, a scale from 0 to 1 million). Note however
that for the purpose of comparing relative rates of occurrence, frequency is completely interchangeable with
absolute counts (a scale from 0 to whatever the size of the corpus) and probabilities (a scale from 0 to 1).
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processing (be it speech perception, reading, etc.), we are often interested in process-

ing beyond the single word level. Processing at the level of multi-word phrases (word

n-grams) is more complex to model than single-word processing. This is partly due

to the (linear) increase in lexical factors when modeling multi-word phrases, but more

importantly, our understanding of phrase processing is not as well developed as our

understanding of single-word processing.

One easily accessible statistic relevant to phrase processing is word n-gram frequency,

which has indeed been demonstrated to affect both language comprehension (Arnon &

Snider, 2010) and language production (Janssen & Barber, 2012; Shao et al., 2019). These

n-gram effects occur in addition to, and are distinct from, the effect of single-word fre-

quency (Jacobs et al., 2016; Shao et al., 2019). It has been suggested that these n-grams

are stored as single units (lexical bundles, see e.g., Jacobs et al., 2016; Tremblay et al.,

2011). However, given the combinatorial explosion of word n-grams that occurs for any

value of n greater than 1, it is clear that storing n-grams (in some sort of expanded men-

tal lexicon) is infeasible for all but the highest frequency n-grams (Baayen et al., 2013,

Onnis & Huettig, in prep.), making whole n-gram storage inconsistent with the observa-

tion that n-gram frequency effects affect both high and low frequency n-grams (Arnon

& Snider, 2010).

We therefore reject the notion that apparent n-gram frequency effects are caused by

the storage of whole n-grams and their frequencies, except for phrases with frequen-

cies high enough to classify them as idioms (or compounds, cf. Jacobs & Dell, 2014),

rather than phrases with purely compositional meaning. A more feasible mechanism

than storing whole n-grams is to make use of conditional probabilities: The probabil-

ity of a word occurring, given the occurrence of the preceding word. These conditional

probabilities can be computed bidirectionally and are generally called transitional prob-

abilities in the context of language (but note that these concepts are fundamentally

equivalent). In studies of reading, the forward transional probability is generally re-

ferred to as predictability, which has been found to have a robust effects on various

reading-related measures (e.g., first fixation duration, Balota et al., 1985; and inspec-

tion probability, Kliegl et al., 2004; for an alternative implementation of predictability

see McDonald and Shillcock, 2003). Transitional probabilities can also be reframed as

surprisal (− logPconditional), an information theoretic measure that is often used in the

field of Natural Language Processing. If we conceptualize the mental lexicon as a net-

work of nodes and edges, transitional probabilities could feasibly be encoded in the

edge weights, whereas storing whole n-grams requires an exponential increase in the

number of nodes (cf. Baayen et al., 2013).
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1.1 Hard to tell the difference: Equivalences

In the following sections, we transform all relevant quantities to a logarithmic scale

(which is common practice) for reasons of computational convenience and cognitive

plausibility2.

Forward transitional probability (FTP) is a function of bigram and word1 frequency:

logP (w |wprev) = log
P (wprev, w)

P (wprev)
= logP (wprev, w)− logP (wprev) (1)

Backward transitional probability (BTP) is a function of bigram and word2 frequency:

logP (wprev|w) = log
P (wprev, w)

P (w)
= logP (wprev, w)− logP (w) (2)

When we compile bigram occurrences from a large corpus of transcribed pseudo-

conversational speech (for corpus details see van Paridon & Thompson, in press), we

find a strong negative correlation between first- and second-word frequency (see Fig-

ure 1), as well as FTP and BTP (see Figure 2). Consequently, when first- and second-

word frequency or FTP and BTP are both included in a linear model, the magnitude

and direction of their effects will interact and therefore not be easily interpretable (if

interpretable at all).

Unfortunately, things only get more confusable (and confusing) from here. Using

Bayes’ Theorem3 we can compute FTP from BTP (and vice versa):

logP (w |wprev) = log
P (wprev|w) ·P (w)

P (wprev)
= logP (wprev|w)+ logP (w)− logP (wprev) (3)

Ergo, information-theoretic surprisal, which is equivalent to negative log FTP can be

computed from word frequencies and BTP4:

− logP (w |wprev) = logP (wprev)− logP (wprev|w)− logP (w) (6)

2Evidence suggests that word frequencies are experienced (both consciously and subconsciously) on a log-
arithmic scale. Contrast angry and enraged, for instance: angry is a fairly frequent word and enraged is fairly
infrequent (in fact, in our dataset, angry is 56 times more frequent than enraged), however the effect of this dif-
ference in frequency on the difference in e.g., reading times or lexical decision times will not be proportional to
the frequency, but to the logarithm of the difference in frequency. Similarly, when asked for explicit ratings in
the difference in word frequency between different words, people are likely to give answers proportional to the
logarithm of the frequency. This is in line with other power laws in cognition and perception and the reason
why common measurement scales such as decibels for sound intensity are logarithmic in the physical unit, but
linear in perception. Note also that the base of the logarithm is irrelevant, in general, because every logarithms
is a multiple of every other logarithm, so when rescaling predictors to their standard deviation (common prac-
tice for linear regression in cognitive science), because the standard deviation of a log-transformed predictor
is proportional to the base of the logarithm, the rescaled predictor will be invariant with respect to the base of
the logarithm.

3Bayes’ Theorem as used here is simply the law of conditional probabilities. Its use here is not specific to
Bayesian statistics.

4Similarly, pointwise mutual information (PMI) can be computed from frequencies:

log
P (wprev, w)

P (wprev) ·P (w)
= logP (wprev, w)− logP (w)− logP (wprev) (4)
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Figure 1: Joint distribution of first and last word frequencies for bigrams.
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Figure 2: Joint distribution of forward and backward transitional probabilities for bigrams.
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Similar results can be derived for other information theoretic measures.

1.2 The surprising effect of surprisal: Multicollinearity in lin-

ear models of behavior

The practical consequence of the equivalences outlined above is that when multiple

measures of frequency and co-occurrence are used simultaneously as predictors in a

linear model, this tends to result in collinearity between linear combinations of predic-

tors. If this multicollinearity is perfect, it is impossible to perform the linear algebra

necessary to fit the regression models. Most statistics packages will issue a warning re-

garding this multicollinearity and which predictors it concerns. However, even in cases

where there is not perfect multicollinearity, the use of two or more co-occurrence mea-

sures can lead to unexpected consequences.

A hypothetical example: To predict reading times of a word of interest, w , we use w

frequency and FTP from wprev to w as predictors (the former as a measure for the ease of

retrieving the current word, the latter as a measure for the predictability of the upcom-

ing word). Counterintuitively, we find that low FTP is associated with faster reading.

Does this mean that surprising words are somehow also more predictable? That seems

contradictory. However, let’s consider a simple linear model of reaction time with word

frequency and FTP as predictors. For simplicity, we leave out the error term:

logRT =β0 +β1 · logP (w)+β2 · logP (w |wprev)

Now, using Equation 3, we note that:

logP (w |wprev) = logP (wprev|w)+ logP (w)− logP (wprev)

And we substitute this back into the model:

logRT =β0 +β1 · logP (w)+β2 ·
(
logP (wprev|w)+ logP (w)− logP (wprev)

)
From this, it becomes clear that the apparent negative effect for FTP on actually re-

flects an effect of BTP minus wprev frequency.

logRT =β0 + (β1 +β2) · logP (w)+β2 ·
(
logP (wprev|w)− logP (wprev)

)
Because the effect of word frequencies is so large and stable, wprev frequency will

tend to dominate BTP and the coefficient β2 will be negative. At the same time, because

And considering Equations 1 and 2, that means we can compute PMI from transitional probability (symmetri-
cally):

log
P (wprev, w)

P (wprev) ·P (w)
= logP (w |wprev)− logP (w) = logP (wprev|w)− logP (wprev) (5)

Many information-theoretical measures can be trivially computed from frequencies and transitional probabil-
ities in this fashion.
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β2 is negative, β1 will be inflated making the effect of w frequency seem larger than it

is.

2 On making theoretically motivated choices

That certain combinations of frequency and transitional probability measures are math-

ematically exchangeable might seem convenient because it allows us to choose a set of

predictors that is convenient for us to work with. This becomes problematic however

if we try to claim that cognitive processes operate on the specific selection of quanti-

ties that we (arbitrarily) chose to model. Strong correlations and multicollinearity make

it near impossible for naive statistical methods to distinguish between theoretical ac-

counts that hinge on the primacy of one probability measure (be it transitional proba-

bility, unigram or bigram frequency, etc.) over others (see e.g., Levy, 2008, for a footnote

on how FTP/BTP correlation complicates predictor selection). Fundamentally, the psy-

chological or neurobiological implementation of processes sensitive to frequency and

transitional probability matters, but we are not able to draw conclusions from these

measures alone. Instead, we need to look to fundamental structural reasons why one

representation would be more compatible with other structures and mechanisms, such

as temporal structure, causality, and basic insights regarding neural connectivity (much

the same way that arguments about frequency versus time domain representation in

M/EEG are resolved by proposing fundamental mechanisms and not by computing the

Fourier transform).

2.1 Rethinking predictive coding: Retrodiction as inference

Rather than putting prediction central in cognition, we propose that cognition func-

tions by making probabilistic causal inferences. If we start from the assumption that

at its core, cognition subserves a perception-action loop, a particularly useful cognitive

mechanism would be to compute inferences about the state of the external world and

the things that led to the current state (i.e., causality), as this is can guide both (imper-

fect) perception and subsequent action planning. Inferences about the current state

of the world and the chain of states leading to the current state are encoded as back-

ward transitional probabilities. The backward transitional probability directly answers

the question “how probable is it, that the currently observed state was preceded by a

given state?”. This probabilistic notion of causality is the same type used in Granger

causality: it does not imply causality in the philosophical or physical sense, but it does

imply stochastic sequential dependence (Granger, 1969). This inference is computed

via Bayes’ Theorem, as above (Equation 3). In particular, we use information about

marginal probabilities (of the current state (marginal likelihood) and the next state (prior))

combined with the conditional probability of the next state based on the current state

(likelihood, here FTP) to compute probabilistic causality. Note that prediction occurs
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here as an intermediate step in determining causality: the likelihood, i.e., FTP, is a crit-

ical piece in computing causality. Note that this account also explains the relative suc-

cess of measures such as cloze probability. In this framework, cloze probability corre-

sponds to the maximum likelihood. In a typical experiment, where word frequencies

have been carefully controlled, we thus have a manipulation of the likelihood under

nearly constant priors. Because the maximum likelihood under constant priors is pro-

portional to the maximum a posteriori value (MAP), i.e., the peak of the posterior, the

standard cloze manipulation corresponds to a manipulation of the BTP. At the same

time, we do not have perfect control over the prior (word frequency) in experiments,

and so the maximum likelihood does not directly correspond to the MAP.

2.2 Bayesian brains with some probabilities?

Although we have presented our account as a direct computation of probabilities, this

is not a necessity. Indeed, our account is compatible with sampling perspectives with

or without direct knowledge of probabilities (cf. Sanborn & Chater, 2016) and with vari-

ational accounts (Friston, 2005; Friston et al., 2012). It is consistent with the “reversal”

of the flow of prediction and error in prominent accounts such as Friston’s (2005) theory

of cortical responses. In this theory, prediction flows upward through the cortical hier-

archy, while error propagates downward. In our account, prediction is used to compute

the probability of a given cause, which corresponds to the goodness of fit, or equiva-

lently error, associated with that cause.

3 Conclusion

The rise of information theory in the brain and behavioral sciences has presented re-

searchers with a plethora of potential quantitative measures. We find that the (arbitrary)

choice of measure cannot reasonably be driven by purely statistical concerns, because

commonly used measures are linear combinations of each other and thus statistically

indistinguishable. This complex interrelation gives rise to apparent paradoxes, such as

an illusory facilitation in processing surprising words when controlling for absolute fre-

quency. However, these paradoxes should not be overinterpreted, as they are spurious,

introduced by a particular decomposition. Instead, we should focus on computational

accounts, such as the one proposed here. By assuming that inferences about causality

are instrumental in both perception and action, two of the core operations of cognition,

we arrive at an account of prediction as a side effect, rather than a “goal” of cognition.

This account allows us to make theoretically motivated choices between information

theoretic measures as predictors for language processing and human behavior more

generally.
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